Advertisements
Advertisements
प्रश्न
If 24 × 42 =16x, then find the value of x.
संक्षेप में उत्तर
उत्तर
We have to find the value of x provided `2 ^4xx 4^2 = 16^x`
So,
`2 ^4xx 4^2 = 16^x`
`2 ^4xx 2^4 = 2^(4_x)`
`2 ^(4+4) = 2^(4_x)`
By equating the exponents we get
4 + 4 + = 4x
8 = 4x
`8/4 = x `
2=x
Hence the value of x is 2 .
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
The square root of 64 divided by the cube root of 64 is
If x-2 = 64, then x1/3+x0 =
Find:-
`125^(1/3)`
Find:-
`32^(2/5)`
Simplify:
`7^(1/2) . 8^(1/2)`