Advertisements
Advertisements
प्रश्न
If 24 × 42 =16x, then find the value of x.
उत्तर
We have to find the value of x provided `2 ^4xx 4^2 = 16^x`
So,
`2 ^4xx 4^2 = 16^x`
`2 ^4xx 2^4 = 2^(4_x)`
`2 ^(4+4) = 2^(4_x)`
By equating the exponents we get
4 + 4 + = 4x
8 = 4x
`8/4 = x `
2=x
Hence the value of x is 2 .
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
The product of the square root of x with the cube root of x is
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
The simplest rationalising factor of \[\sqrt[3]{500}\] is
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]