Advertisements
Advertisements
प्रश्न
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
पर्याय
5a2bc2
25ab2c
5a3bc3
125a2bc2
उत्तर
Find value of \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\]
\[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] = `5sqrt(5^5 a^10 b^5 c^10)`
`= 5^(5 xx 1/5) a^(10 xx 1/5 ) b^(5 xx 1/5 ) c^(10xx1/5)`
`= 5^(5 xx 1/5) a^(10 xx 1/5 ) b^(5 xx 1/5 ) c^(10xx1/5)`
\[\sqrt[5]{3125 a^{10} b^5 c^{10}} = 5 a^2 b c^2\]
APPEARS IN
संबंधित प्रश्न
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If x-2 = 64, then x1/3+x0 =
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals