Advertisements
Advertisements
प्रश्न
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
पर्याय
\[5\sqrt{5}\]
\[\sqrt{5}\]
\[25\sqrt{5}\]
125
उत्तर
We have to find the value of `(2x)^x`if `4^x - 4^(x-1) = 24`
So,
Taking 4x as common factor we get
`4^x (1- 1/4) = 24`
`4^x (1-4^-1) = 24`
`4^x ((1xx4)/(1 xx4)-1/4) = 24`
`4^4 ((4-1)/4)= 24`
`4^x xx 3/4 = 24`
`4^x = 24 xx 4/3`
`4^x = 32`
`2^(2x) =2^5`
By equating powers of exponents we get
`2x = 5 `
`x=5/2`
By substituting `x=5/2` in `(2x)^x` we get
`(2x)^x=(2xx 5/2)^(5/2)`
= `(2xx5/2)^(5/2)`
`=5^(5/2)`
`=5^(5 xx1/2)`
`(2x)^x = 2sqrt(5^5)`
`=2sqrt (5xx5xx5xx5xx5)`
`= 5xx5 2sqrt5`
= `25sqrt5`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]