Advertisements
Advertisements
प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
उत्तर
`(a^(3n-9))^6/(a^(2n-4))`
`=a^(6(3n-9))/a^(2n-4)`
`=a^(18n-54)/a^(2n-4)`
`=a^(18n-54)xxa^-(2n-4)`
`=a^(18n-54)xxa^(-2n+4)`
`=a^(18n-54-2n+4)`
`=a^(16n-50)`
APPEARS IN
संबंधित प्रश्न
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.