Advertisements
Advertisements
प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
उत्तर
aa + bb
Here a = 3 and b = -2
Put the values in the expression aa + bb
33 + (-2)-2
`=27+1/(-2)^2`
`=27+1/4`
`=(108+1)/4`
`=109/4`
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If `27^x=9/3^x,` find x.
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to