Advertisements
Advertisements
प्रश्न
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
पर्याय
4
8
12
2
उत्तर
We have to find the value of `(x/y)^(x-y) + (y/x)^(y-x) ` if x = 2, y = 4
Substitute x = 2, y = 4 in `(x/y)^(x-y) + (y/x)^(y-x) ` to get,
`(x/y)^(x-y) + (y/x)^(y-x) ` = `(2/4)^(2-4) + (4/2)^(4-2)`
= `(2/4)^-2+ (4/2)^2`
= `(1/2)^-2 + (2)^2`
= `(1/2^-2) + 4`
`(x/y)^(x-y) + (y/x)^(y-x) = 1/(1/2^2) +4`
=` 1/(1/4) +4`
= `1 xx 4/1 +4`
= 4+4
= 8
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
If `1176=2^a3^b7^c,` find a, b and c.
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
If `27^x=9/3^x,` find x.
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
State the power law of exponents.
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to