Advertisements
Advertisements
प्रश्न
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
विकल्प
4
8
12
2
उत्तर
We have to find the value of `(x/y)^(x-y) + (y/x)^(y-x) ` if x = 2, y = 4
Substitute x = 2, y = 4 in `(x/y)^(x-y) + (y/x)^(y-x) ` to get,
`(x/y)^(x-y) + (y/x)^(y-x) ` = `(2/4)^(2-4) + (4/2)^(4-2)`
= `(2/4)^-2+ (4/2)^2`
= `(1/2)^-2 + (2)^2`
= `(1/2^-2) + 4`
`(x/y)^(x-y) + (y/x)^(y-x) = 1/(1/2^2) +4`
=` 1/(1/4) +4`
= `1 xx 4/1 +4`
= 4+4
= 8
APPEARS IN
संबंधित प्रश्न
Solve the following equation:
`3^(x+1)=27xx3^4`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Simplify:
`11^(1/2)/11^(1/4)`