Advertisements
Advertisements
प्रश्न
Solve the following equation:
`3^(x+1)=27xx3^4`
उत्तर
`3^(x+1)=27xx3^4`
`rArr3^(x+1)=3^3xx3^4`
`rArr3^(x+1)=3^(3+4)`
`rArr3^(x+1)=3^7`
⇒ x + 1 = 7
⇒ x = 7 - 1
⇒ x = 6
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`7^(2x+3)=1`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Simplify:
`7^(1/2) . 8^(1/2)`