Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
उत्तर
Given `(2^3)^4=(2^2)^x`
`2^(3xx4)=2^(2xx x)`
`2^12=2^(2x)`
On equating the exponents
12 = 2x
x = 12/2
x = 6
Hence, the value of x = 6.
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =