Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
उत्तर
Given `(3/5)^x(5/3)^(2x)=125/27`
`3^x/5^x xx5^(2x)/3^(2x)=125/27`
`3^x/3^(2x)xx5^(2x)/5^x=125/27`
`5^(2x-x)/3^(2x-x)=125/27`
`5^(2x-x)/3^(2x-x)=5^3/3^3`
`(5/3)^(2x-x)=(5/3)^3`
Comparing exponents we get
2x - x = 3
x = 3
Hence, the value of x = 3.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`4^(2x)=1/32`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
`(2/3)^x (3/2)^(2x)=81/16 `then x =
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`32^(2/5)`