Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
उत्तर
Given `(3/5)^x(5/3)^(2x)=125/27`
`3^x/5^x xx5^(2x)/3^(2x)=125/27`
`3^x/3^(2x)xx5^(2x)/5^x=125/27`
`5^(2x-x)/3^(2x-x)=125/27`
`5^(2x-x)/3^(2x-x)=5^3/3^3`
`(5/3)^(2x-x)=(5/3)^3`
Comparing exponents we get
2x - x = 3
x = 3
Hence, the value of x = 3.
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If `1176=2^a3^b7^c,` find a, b and c.
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Solve the following equation:
`3^(x+1)=27xx3^4`
Simplify:
`7^(1/2) . 8^(1/2)`
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.