Advertisements
Advertisements
प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
उत्तर
Consider the left hand side:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)`
`=(a+b+c)/(1/(ab)+1/(bc)+1/(ca))`
`=(a+b+c)/((c+a+b)/abc)`
`=(a+b+c)xx(abc/(a+b+c))`
= abc
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
If x-2 = 64, then x1/3+x0 =
`(2/3)^x (3/2)^(2x)=81/16 `then x =
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`