Advertisements
Advertisements
प्रश्न
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
उत्तर
Consider the left hand side:
`(a^-1+b^-1)^-1`
`=1/(a^-1+b^-1)`
`=1/(1/a+1/b)`
`=1/((b+a)/(ab))`
`=(ab)/(a+b)`
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The simplest rationalising factor of \[\sqrt[3]{500}\] is
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
The positive square root of \[7 + \sqrt{48}\] is