Advertisements
Advertisements
प्रश्न
The positive square root of \[7 + \sqrt{48}\] is
पर्याय
\[7 + 2\sqrt{3}\]
\[7 + \sqrt{3}\]
\[ \sqrt{3}+2\]
\[3 + \sqrt{2}\]
उत्तर
Given that:`7 +sqrt48`.To find square root of the given expression we need to rewrite the expression in the form `a^2 +b^2 +2ab = (a+b)^2`
`7 +sqrt48 = 3+4+2xx2xxsqrt3`
` = (sqrt3)^2 + (2)^2 +2 xx 2xx xxsqrt3`
`= (sqrt3 + 2 )^2`
Hence the square root of the given expression is `sqrt3+2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Simplify:
`root3((343)^-2)`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
Simplify:
`7^(1/2) . 8^(1/2)`