Advertisements
Advertisements
प्रश्न
Simplify:
`root3((343)^-2)`
उत्तर
Given `root3((343)^-2)`
`root3((343)^-2)=root3(1/343^2)`
`=root3(1/(7^3)^2)`
`=1^(1/3)/7^(3xx1/3xx2)`
`=1/7^2`
`=1/49`
Hence the value of `root3((343)^-2)` is `1/49`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Solve the following equation for x:
`7^(2x+3)=1`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
The product of the square root of x with the cube root of x is
(256)0.16 × (256)0.09
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =