Advertisements
Advertisements
प्रश्न
(256)0.16 × (256)0.09
पर्याय
4
16
64
256.25
उत्तर
We have to find the value of `(256)^0.16 xx (256)^0.09`So,
By using law of rational exponents
`a^m xx a^n = a^(m+n)` we get
`(256)^0.16 xx (256)^0.09 = (256)^0.16 xx (256)^0.09`
=`(256)^(0.16+0.09)`
= `256^(0.25)`
=`(256)^(25/100)`
`(256)^0.16 xx (256)^0.09 = 2^(8 xx 25/100)`
= `2^(8 xx 25/100)`
` = 2^(8 xx 1/4)`
` = 2^(8 xx 1/4)`
= 4
The value of `(256)^0.16 xx (256)^0.09 `is 4
APPEARS IN
संबंधित प्रश्न
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
Simplify:-
`(1/3^3)^7`
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`