Advertisements
Advertisements
प्रश्न
(256)0.16 × (256)0.09
विकल्प
4
16
64
256.25
उत्तर
We have to find the value of `(256)^0.16 xx (256)^0.09`So,
By using law of rational exponents
`a^m xx a^n = a^(m+n)` we get
`(256)^0.16 xx (256)^0.09 = (256)^0.16 xx (256)^0.09`
=`(256)^(0.16+0.09)`
= `256^(0.25)`
=`(256)^(25/100)`
`(256)^0.16 xx (256)^0.09 = 2^(8 xx 25/100)`
= `2^(8 xx 25/100)`
` = 2^(8 xx 1/4)`
` = 2^(8 xx 1/4)`
= 4
The value of `(256)^0.16 xx (256)^0.09 `is 4
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
`(2/3)^x (3/2)^(2x)=81/16 `then x =
The positive square root of \[7 + \sqrt{48}\] is
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Find:-
`125^(1/3)`