Advertisements
Advertisements
प्रश्न
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
उत्तर
Given `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=((5^(-1xx7/2)xx7^(2xx7/2))/(5^(2xx7/2)xx7^(-4xx7/2)))xx((5^(-2xx(-5)/2)xx7^(3xx(-5)/2))/(5^(3xx(-5)/2)xx7^(-5xx(-5)/2)))`
`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`
By using the law of rational exponents `a^m/a^n=a^(m-n)` we have
`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`
`=5^((-7)/2-7)xx7^(7+14)xx5^(5+15/2)xx7^(-15/2-25/2)`
`=5^((-7)/2-14/2)xx7^21xx5^(10/2+15/2)xx7^(-40/2)`
`=5^(-7/2-14/2+10/2+15/2)xx7^(21-40/2)`
`=5^((-7-14+10+15)/2)xx7^((42-40)/2)`
`=5^(4/2)xx7^(2/2)`
`=5^2xx7^1`
`=25xx7`
= 175
Hence the value of `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)` is 175
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
If `27^x=9/3^x,` find x.
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If 9x+2 = 240 + 9x, then x =
The simplest rationalising factor of \[\sqrt[3]{500}\] is
Simplify:
`11^(1/2)/11^(1/4)`