Advertisements
Advertisements
प्रश्न
If 9x+2 = 240 + 9x, then x =
विकल्प
0.5
0.2
0.4
0.1
उत्तर
We have to find the value of x
Given `9 ^(x+2) = 240 +9^x`
`9^x xx 9^2 = 240 +9^x`
`9^2 = 240/9^x + 9^x/9^x`
`81= 240/9^x+ 1`
`81- 1= 240/9^x`
`80 240/9^x`
`9^x xx 80 = 240`
`9^x = 240/80`
`3^(2x )= 3`
`3^(2x )= 3^1`
By equating the exponents we get
`2x = 1`
`x= 1/2`
`x= 0.5`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
State the power law of exponents.
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.