Advertisements
Advertisements
प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
उत्तर
We have to simplify the following, assuming that x, y, z are positive real numbers
Given `(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
`=(x^(1/2))^(-2/3)(y^4)^(1/2)div(x xxy^(-1/2))^(1/2)`
`=(x^(1/2xx-2/3)xxy^(4xx1/2))/(x^(1/2)xxy^(-1/2xx1/2))`
`=(x^(-1/3)xxy^2)/(x^(1/2)xxy^(-1/4))`
By using the law of rational exponents, `a^mdiva^n=a^(m-n)` we have
`=x^(-1/3-1/2)xxy^(2+1/4)`
`=x^(-5/6)xxy^(9/4)`
`=1/x^(5/6)xxy^(9/4)`
`=y^(9/4)/x^(5/6)`
APPEARS IN
संबंधित प्रश्न
Find:-
`9^(3/2)`
Simplify the following
`(2x^-2y^3)^3`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =