Advertisements
Advertisements
प्रश्न
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
विकल्प
101
99
98
102
उत्तर
Given that `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2)` and `y = (sqrt3 + sqrt2) /(sqrt3 - sqrt2)`.
We need to find `x^2 +xy +y^2`
Now we will rationalize x. We know that rationalization factor for `sqrt3+sqrt2` is `sqrt3-sqrt2` `sqrt3+sqrt2`. We will multiply numerator and denominator of the given expression `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2)` by `sqrt3 - sqrt2`, to get
`x = `x= (sqrt3 - sqrt2) /(sqrt3 + sqrt2) xx (sqrt3 - sqrt2) /(sqrt3 - sqrt2)`
`= ((sqrt3)^2 +(sqrt2)^2 - 2 xx sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3+2-2sqrt6)/(3-2)`
` = 5-2sqrt6`
Similarly, we can rationalize y. We know that rationalization factor for `sqrt3 - sqrt2` is `sqrt3 +sqrt2`. We will multiply numerator and denominator of the given expression `(sqrt3 +sqrt2) /(sqrt3 - sqrt2)`by `sqrt3 + sqrt2`, to get
`y = (sqrt3 + sqrt2) /(sqrt3 - sqrt2) xx (sqrt3 + sqrt2) /(sqrt3 +sqrt2)`
`= ((sqrt3)^2 +(sqrt2)^2 +2 xx sqrt3 xx sqrt2)/((sqrt3)^2 - (sqrt2)^2)`
`= (3+2-2sqrt6)/(3-2)`
` = 5-2sqrt6`
Therefore,
`x^2 + xy + y ^ 2 = ( 5 - 2 sqrt6 )^2+ (5-2sqrt6) (5 + 2 sqrt6)+ (5+2sqrt6)^2`
` = 5^2 +(2sqrt6 )^2 - 2 xx 5 xx 2 sqrt6 +5^2 - (2sqrt6 )^2+ 5^2 + (2sqrt6)^2 + 2xx 5 xx 2sqrt6`
` = 25 +24 -20sqrt6 +25 - 24 +25 +24 +20sqrt6`
` = 49 + 1+ 49`
` = 99`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
State the quotient law of exponents.
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If o <y <x, which statement must be true?
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[\frac{5 - \sqrt{3}}{2 + \sqrt{3}} = x + y\sqrt{3}\] , then
Find:-
`32^(2/5)`