Advertisements
Advertisements
प्रश्न
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
विकल्प
\[3 + 2\sqrt{2}\]
\[\frac{1}{3 + 2\sqrt{2}}\]
\[3 - 2\sqrt{2}\]
\[\frac{3}{2} - \sqrt{2}\]
उत्तर
Given that `1/(sqrt9- sqrt8)`
We know that rationalization factor for `sqrt9 - sqrt8` is `sqrt9 + sqrt8`. We will multiply numerator and denominator of the given expression `1/(sqrt9- sqrt8)`by `sqrt9 + sqrt8`, to get
`1/(sqrt9- sqrt8) xx (sqrt9 + sqrt8)/(sqrt9 + sqrt8) = (sqrt9 + sqrt8)/ ((sqrt9)^2 - (sqrt8)^2) `
` = (sqrt9 + sqrt8) / (9-8)`
` = sqrt9 +sqrt2 sqrt4`
` = 3+2+sqrt2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
The value of x − yx-y when x = 2 and y = −2 is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
Find:-
`125^((-1)/3)`