Advertisements
Advertisements
प्रश्न
If `5^(3x)=125` and `10^y=0.001,` find x and y.
उत्तर
It is given that `5^(3x)=125` and `10^y=0.001`.
Now,
`5^(3x)=125`
`rArr5^(3x)=5^3`
`rArr3x = 3`
x = 1
And,
`10^y=0.001`
`rArr10^y=1/1000`
`rArr10^y=10^-3`
⇒ y = -3
hence, the value of x and yare 1 and -3, respectively.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Simplify:
`root3((343)^-2)`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
The product of the square root of x with the cube root of x is
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=