Advertisements
Advertisements
प्रश्न
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
विकल्प
9
5
17
7
उत्तर
Given that `x=(sqrt5 +sqrt3)/(sqrt5 - sqrt3)`and `y = (sqrt5 - sqrt3)/(sqrt5 +sqrt3)`.
We are asked to find `x+y + xy`
Now we will rationalize x. We know that rationalization factor for `sqrt5 -sqrt3` is `sqrt5 +sqrt3`. We will multiply numerator and denominator of the given expression `x=(sqrt5 +sqrt3)/(sqrt5 - sqrt3)` by `sqrt5 + sqrt3`, to get
`x=(sqrt5 +sqrt3)/(sqrt5 - sqrt3) xx (sqrt5 +sqrt3)/(sqrt5 + sqrt3)`
`= ((sqrt5)^2+(sqrt3)^2+ 2 xx sqrt5 xx sqrt3)/((sqrt5)^2 - (sqrt3)^2)`
`= (5+3+2sqrt15)/(5-3)`
`= 4 + sqrt15`
Similarly, we can rationalize y. We know that rationalization factor for `sqrt5 +sqrt3`is`sqrt5 - sqrt3`. We will multiply numerator and denominator of the given expression `(sqrt5 - sqrt3)/(sqrt5+sqrt3)`by,`sqrt5 - sqrt3` to get
x = `(sqrt5 - sqrt3)/(sqrt5+sqrt3) xx (sqrt5 - sqrt3)/(sqrt5-sqrt3)`
` = ((sqrt5)^2 + (sqrt3)^2 - 2 xx sqrt5 xx sqrt3)/((sqrt5)^2 - (sqrt3)) `
`= (5+3-2sqrt15)/(5-3)`
`= (8-2sqrt15)/2`
`= 4-sqrt15`
Therefore,
`x+y+xy = 4 +sqrt15 + 4 -sqrt15 +(4+sqrt15) (4-sqrt15)`
`= 4+4 + 16 - 4sqrt15 + 4 sqrt15 - (sqrt15)^2`
` = 24 - 15 `
=` 9`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Simplify:
`11^(1/2)/11^(1/4)`