Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
उत्तर
Given `(13)^(sqrtx)=4^4-3^4-6`
`(13)^(sqrtx)=(2^2)^4-3^4-6`
`rArr(13)^(sqrtx)=2^8-3^4-6`
`rArr(13)^sqrtx=256-81-6`
`rArr(13)^sqrtx=169`
`rArr(13)^sqrtx=(13)^2`
On comparing we get,
`sqrtx=2`
On squaring both side we get,
x = 4
Hence, the value of x = 4.
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
The square root of 64 divided by the cube root of 64 is
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Find:-
`125^(1/3)`
Simplify:
`7^(1/2) . 8^(1/2)`