Advertisements
Advertisements
प्रश्न
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
विकल्प
\[\frac{\sqrt{2}}{4}\]
\[\sqrt[2]{2}\]
4
64
उत्तर
For `x /(x^1.5) = 8x^-1`, we have to find the value of x.
So,
`x^1 /(x^1.5) = 8x^-1`
`x ^(1-1.5) = 8x^-1`
`x ^(-0.5) = 2^3x^-1`
`(x^0.5) /x^-1= 2^3`
`x^(-5/10) /x^-1= 2^3`
`x^(-1/2+1)= 2^3`
`x^(-1/2+2/2)= 2^3`
`x^((-1+2)/2) = 2^3`
`x^(1/2) = 2^3`
By raising both sides to the power 2 we get
`x^(1/2xx2) = 2 ^(3xx2)`
`x^(1/2xx2) = 2 ^6`
`x^1 = 64`
The value of x is 64.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Solve the following equation for x:
`4^(2x)=1/32`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
`(2/3)^x (3/2)^(2x)=81/16 `then x =
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =