Advertisements
Advertisements
प्रश्न
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
विकल्प
3
9
27
81
उत्तर
We have to find `3^(2(n/4-4))`
Given `sqrt(2^n) = 1024`
`(sqrt(2^n) = 2^10`
`2^(nxx1/2) = 2^10`
Equating powers of rational exponents we get
`n xx 1/2 = 10`
`n = 10 xx 2`
`n =20`
Substituting in `3^(2(n/4-4))` ``we get
`3^(2(n/4-4)) = 3^(2(20/4-4))`
`= 3^(2(5-4))`
` =3^(2xx1)`
`= 9`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
The simplest rationalising factor of \[\sqrt[3]{500}\] is