Advertisements
Advertisements
प्रश्न
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
पर्याय
3
9
27
81
उत्तर
We have to find `3^(2(n/4-4))`
Given `sqrt(2^n) = 1024`
`(sqrt(2^n) = 2^10`
`2^(nxx1/2) = 2^10`
Equating powers of rational exponents we get
`n xx 1/2 = 10`
`n = 10 xx 2`
`n =20`
Substituting in `3^(2(n/4-4))` ``we get
`3^(2(n/4-4)) = 3^(2(20/4-4))`
`= 3^(2(5-4))`
` =3^(2xx1)`
`= 9`
APPEARS IN
संबंधित प्रश्न
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`(16^(-1/5))^(5/2)`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If x is a positive real number and x2 = 2, then x3 =
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Find:-
`125^((-1)/3)`
Simplify:-
`(1/3^3)^7`