मराठी

If X = √ 6 + √ 5 ,Then X 2 + 1 X 2 − 2 = - Mathematics

Advertisements
Advertisements

प्रश्न

If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]

पर्याय

  • \[2\sqrt{6}\]

  • \[2\sqrt{5}\]

  • 24

  • 20

MCQ

उत्तर

Given that `x = sqrt6 +sqrt5 ` .Hence `1/x`is given as

`1/x = 1/(sqrt6+sqrt5)`.We need to find  `x^2 +1/x^2 - 2`

We know that rationalization factor for  `sqrt6 +sqrt5` is`sqrt6 -sqrt5`. We will multiply numerator and denominator of the given expression   `1/(sqrt6+sqrt5)`by `sqrt6 -sqrt5`, to get

`1/x = 1/(sqrt6+sqrt5) xx (sqrt6-sqrt5)/(sqrt6-sqrt5) `

` = (sqrt6-sqrt5)/((sqrt6)^2 - (sqrt5)^2)`

` = (sqrt6  - sqrt5)/(6-5)`

` = sqrt6 - sqrt5.`

We know that `(x-1/x)^2 = x^2 + 1/x^2 - 2 ` therefore,

`x^2 + 1/x^2 - 2 = (x-1/x)^2 `

` = (sqrt 6 + sqrt5 - (sqrt6  - sqrt5))^2`

` = (sqrt6 + sqrt5 - sqrt6 +sqrt5)^2`

` = (2sqrt5)^2`

`= 20`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Rationalisation - Exercise 3.4 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 9
पाठ 3 Rationalisation
Exercise 3.4 | Q 24 | पृष्ठ १८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×