Advertisements
Advertisements
प्रश्न
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
पर्याय
\[2\sqrt{6}\]
\[2\sqrt{5}\]
24
20
उत्तर
Given that `x = sqrt6 +sqrt5 ` .Hence `1/x`is given as
`1/x = 1/(sqrt6+sqrt5)`.We need to find `x^2 +1/x^2 - 2`
We know that rationalization factor for `sqrt6 +sqrt5` is`sqrt6 -sqrt5`. We will multiply numerator and denominator of the given expression `1/(sqrt6+sqrt5)`by `sqrt6 -sqrt5`, to get
`1/x = 1/(sqrt6+sqrt5) xx (sqrt6-sqrt5)/(sqrt6-sqrt5) `
` = (sqrt6-sqrt5)/((sqrt6)^2 - (sqrt5)^2)`
` = (sqrt6 - sqrt5)/(6-5)`
` = sqrt6 - sqrt5.`
We know that `(x-1/x)^2 = x^2 + 1/x^2 - 2 ` therefore,
`x^2 + 1/x^2 - 2 = (x-1/x)^2 `
` = (sqrt 6 + sqrt5 - (sqrt6 - sqrt5))^2`
` = (sqrt6 + sqrt5 - sqrt6 +sqrt5)^2`
` = (2sqrt5)^2`
`= 20`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
If a = 3 and b = -2, find the values of :
ab + ba
Simplify:
`(0.001)^(1/3)`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
The square root of 64 divided by the cube root of 64 is
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to