Advertisements
Advertisements
प्रश्न
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
विकल्प
\[2\sqrt{6}\]
\[2\sqrt{5}\]
24
20
उत्तर
Given that `x = sqrt6 +sqrt5 ` .Hence `1/x`is given as
`1/x = 1/(sqrt6+sqrt5)`.We need to find `x^2 +1/x^2 - 2`
We know that rationalization factor for `sqrt6 +sqrt5` is`sqrt6 -sqrt5`. We will multiply numerator and denominator of the given expression `1/(sqrt6+sqrt5)`by `sqrt6 -sqrt5`, to get
`1/x = 1/(sqrt6+sqrt5) xx (sqrt6-sqrt5)/(sqrt6-sqrt5) `
` = (sqrt6-sqrt5)/((sqrt6)^2 - (sqrt5)^2)`
` = (sqrt6 - sqrt5)/(6-5)`
` = sqrt6 - sqrt5.`
We know that `(x-1/x)^2 = x^2 + 1/x^2 - 2 ` therefore,
`x^2 + 1/x^2 - 2 = (x-1/x)^2 `
` = (sqrt 6 + sqrt5 - (sqrt6 - sqrt5))^2`
` = (sqrt6 + sqrt5 - sqrt6 +sqrt5)^2`
` = (2sqrt5)^2`
`= 20`
APPEARS IN
संबंधित प्रश्न
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
State the product law of exponents.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
If (23)2 = 4x, then 3x =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to