Advertisements
Advertisements
प्रश्न
If (23)2 = 4x, then 3x =
विकल्प
3
6
9
27
उत्तर
We have to find the value of `3^x`provided `(2^3)^2 = 4`
So,
`2^(3xx 2) = 2^(2x)`
`2^6 = 2^(2x)`
By equating the exponents we get
`6=2x`
`6/2 = x`
`3=x`
By substituting in `3^x`we get
`3^x = 3^3`
`=27`
The value of`3^x` is 27
APPEARS IN
संबंधित प्रश्न
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Simplify:
`(0.001)^(1/3)`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =