Advertisements
Advertisements
प्रश्न
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
उत्तर
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
`rArr(2^2)^(x-1)xx(1/2)^(3-2x)=(1/2^3)^x`
`rArr(2)^(2x-2)xx(2)^(-(3-2x))=(2)(-3x)`
`rArr(2)^(2x-2-3+2x)=(2)^(-3x)`
⇒ 4x - 5 = -3x
⇒ 4x + 3x = 5
⇒ 7x = 5
⇒ x = 5/7
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
If a = 3 and b = -2, find the values of :
ab + ba
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If 9x+2 = 240 + 9x, then x =
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=