Advertisements
Advertisements
प्रश्न
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
विकल्प
25
\[\frac{1}{125}\]
625
\[\frac{1}{5}\]
उत्तर
We have to find `5nsqrt64` provided \[\sqrt{5^n} = 125\]
So,
`sqrt 5^n = 125`
`5^(nxx 1/2)= 5^3`
`n/2 = 3`
`n=3xx2`
` n =6`
Substitute ` n =6` in `5nsqrt64` to get
` `5nsqrt64 = 5^(2^(6x1/6)`
=` 5^(2^(6x1/6)`
`= 5xx5`
`=25`
Hence the value of `5nsqrt64` is 25.
APPEARS IN
संबंधित प्रश्न
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
If `27^x=9/3^x,` find x.
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
If 9x+2 = 240 + 9x, then x =
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Find:-
`32^(2/5)`