Advertisements
Advertisements
प्रश्न
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
पर्याय
25
\[\frac{1}{125}\]
625
\[\frac{1}{5}\]
उत्तर
We have to find `5nsqrt64` provided \[\sqrt{5^n} = 125\]
So,
`sqrt 5^n = 125`
`5^(nxx 1/2)= 5^3`
`n/2 = 3`
`n=3xx2`
` n =6`
Substitute ` n =6` in `5nsqrt64` to get
` `5nsqrt64 = 5^(2^(6x1/6)`
=` 5^(2^(6x1/6)`
`= 5xx5`
`=25`
Hence the value of `5nsqrt64` is 25.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
If a = 3 and b = -2, find the values of :
aa + bb
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Simplify:
`7^(1/2) . 8^(1/2)`
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`