Advertisements
Advertisements
प्रश्न
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`
उत्तर
`(3/5)^4 (8/5)^-12 (32/5)^6 = 3^4/5^4 xx (5/2^3)^12 xx (2^5/5)^6` ...`(∵ a^-1 = 1/a)`
= `3^4/5^4 xx 5^12/2^36 xx 2^30/5^6` ...[∵ (am)n = amn]
= `(3^4 xx 5^(12 - 4 - 6))/(2^(36 - 30))` ...`[∵ a^m/a^n = a^(m - n)]`
= `3^4/2^6 xx 5^2`
= `(81 xx 25)/64`
= `2025/64`
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Solve the following equation for x:
`7^(2x+3)=1`
Simplify:
`(16^(-1/5))^(5/2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
Which of the following is equal to x?
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`