Advertisements
Advertisements
प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
उत्तर
Consider the left hand side:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
`=x^(ac)/x^(bc)xxx^(ba)/x^(ca)xxx^(cb)/x^(ab)`
`=(x^(ac)xxx^(ba)xxx^(cb))/(x^(bc)xxx^(ca)xxx^(ab))`
`=x^(ac+ba+cb)/x^(bc+ca+ab)`
= 1
Left hand side is equal to right hand side.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
If a = 3 and b = -2, find the values of :
(a + b)ab
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
Simplify:-
`(1/3^3)^7`