Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
उत्तर
Given `(2^3)^4=(2^2)^x`
`2^(3xx4)=2^(2xx x)`
`2^12=2^(2x)`
On equating the exponents
12 = 2x
x = 12/2
x = 6
Hence, the value of x = 6.
APPEARS IN
संबंधित प्रश्न
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If x is a positive real number and x2 = 2, then x3 =
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The value of \[\sqrt{3 - 2\sqrt{2}}\] is
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`