Advertisements
Advertisements
प्रश्न
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
उत्तर
Given `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=((5^(-1xx7/2)xx7^(2xx7/2))/(5^(2xx7/2)xx7^(-4xx7/2)))xx((5^(-2xx(-5)/2)xx7^(3xx(-5)/2))/(5^(3xx(-5)/2)xx7^(-5xx(-5)/2)))`
`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`
By using the law of rational exponents `a^m/a^n=a^(m-n)` we have
`rArr((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)=(5^((-7)/2)xx7^7)/(5^7xx7^-14)xx(5^5xx7^((-15)/2))/(5^((-15)/2)xx7^(25/2))`
`=5^((-7)/2-7)xx7^(7+14)xx5^(5+15/2)xx7^(-15/2-25/2)`
`=5^((-7)/2-14/2)xx7^21xx5^(10/2+15/2)xx7^(-40/2)`
`=5^(-7/2-14/2+10/2+15/2)xx7^(21-40/2)`
`=5^((-7-14+10+15)/2)xx7^((42-40)/2)`
`=5^(4/2)xx7^(2/2)`
`=5^2xx7^1`
`=25xx7`
= 175
Hence the value of `((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)` is 175
APPEARS IN
संबंधित प्रश्न
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
State the quotient law of exponents.
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
Find:-
`16^(3/4)`
Simplify:
`11^(1/2)/11^(1/4)`