Advertisements
Advertisements
प्रश्न
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
उत्तर
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
LHS = `(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)`
`=(3^(a-b))^(a+b)(3^(b-c))^(b+c)(3^(c-a))^(c+a)`
`=(3^((a-b)(a+b)))(3^((b-c)(b+c)))(3^((c-a)(c+a)))`
`=(3^(a^2-b^2))(3^(b^2-c^2))(3^(c^2-a^2))`
`=3^(a^2-b^2+b^2-c^2+c^2-a^2)`
`=3^0`
= 1
= RHS
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
If a = 3 and b = -2, find the values of :
aa + bb
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Solve the following equation:
`3^(x+1)=27xx3^4`
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If 102y = 25, then 10-y equals
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to