English

Show That: `(3^A/3^B)^(A+B)(3^B/3^C)^(B+C)(3^C/3^A)^(C+A)=1` - Mathematics

Advertisements
Advertisements

Question

Show that:

`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`

Solution

`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`

LHS = `(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)`

`=(3^(a-b))^(a+b)(3^(b-c))^(b+c)(3^(c-a))^(c+a)`

`=(3^((a-b)(a+b)))(3^((b-c)(b+c)))(3^((c-a)(c+a)))`

`=(3^(a^2-b^2))(3^(b^2-c^2))(3^(c^2-a^2))`

`=3^(a^2-b^2+b^2-c^2+c^2-a^2)`

`=3^0`

= 1

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Exponents of Real Numbers - Exercise 2.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 2 Exponents of Real Numbers
Exercise 2.2 | Q 4.8 | Page 25

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×