Advertisements
Advertisements
Question
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
Solution
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
LHS = `(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)`
`=(3^(a-b))^(a+b)(3^(b-c))^(b+c)(3^(c-a))^(c+a)`
`=(3^((a-b)(a+b)))(3^((b-c)(b+c)))(3^((c-a)(c+a)))`
`=(3^(a^2-b^2))(3^(b^2-c^2))(3^(c^2-a^2))`
`=3^(a^2-b^2+b^2-c^2+c^2-a^2)`
`=3^0`
= 1
= RHS
APPEARS IN
RELATED QUESTIONS
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If x-2 = 64, then x1/3+x0 =
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to