Advertisements
Advertisements
Question
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
Options
8
\[\frac{1}{8}\]
2
\[\frac{1}{2}\]
Solution
Simplify `(256)^((-4 3/2)`
`(256)^((-4 3/2))` = `(256)^-(2^2)^(3/2)`
= `(256)^((-2^(2xx - 3/2))`
= `(256)^-(2^(2xx - 3/2))`
`(256)^((-4-^(3/2))` = `(256)^(-(2) ^((-3))`
`(256)^((-4-^(3/2))` = `(256) ^(1/((-2))`
= `(256) ^(1/(-8)`
= `(2^8) ^(1/(-8)`
= `2^(8 xx 1/(-8)`
`(256)^((-4 -3/2)) = 2^(8xx 1/-8) = 1/2`
APPEARS IN
RELATED QUESTIONS
Simplify the following
`(2x^-2y^3)^3`
If a = 3 and b = -2, find the values of :
aa + bb
Solve the following equation for x:
`7^(2x+3)=1`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
State the product law of exponents.
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.
Which of the following is equal to x?