Advertisements
Advertisements
Question
Which of the following is equal to x?
Options
`x^(12/7) - x^(5/7)`
`root(12)((x^4)^(1/3)`
`(sqrt(x^3))^(2/3)`
`x^(12/7) xx x^(7/12)`
Solution
`bb((sqrt(x^3))^(2/3))`
Explanation:
`(sqrt(x^3))^(2/3) = (x^(3/2))^(2/3)`
= `x^(3/2 xx 2/3)` ...`[∵ (a^m)^n = a^(mn)]`
= x
APPEARS IN
RELATED QUESTIONS
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`