Advertisements
Advertisements
Question
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`
Solution
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(-2/3)) = ((3^2)^(1/3) xx (3^3)^(-1/2))/(3^(1/6) xx 3^(-2/3))` ...[∵ (am)n = amn]
= `(3^(2/3) xx 3^(-3/2))/(3^(1/6) xx 3^(-2/3))` ...[∵ am × an = am + n]
= `(3^(2/3 - 3/2))/(3^(1/6 - 2/3))`
= `(3^((4 - 9)/6))/(3^((1 - 4)/6))` ...`[∵ a^m/a^n = a^(m - n)]`
= `(3^(-5/6))/(3^(-3/6)`
= `3^(- 5/6 + 3/6)`
= `3^(-2/6)`
= `3^(-1/3)`
APPEARS IN
RELATED QUESTIONS
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Simplify:
`root3((343)^-2)`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If 102y = 25, then 10-y equals
The value of 64-1/3 (641/3-642/3), is
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =