Advertisements
Advertisements
Question
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solution
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
`rArr(2^2)^(x-1)xx(1/2)^(3-2x)=(1/2^3)^x`
`rArr(2)^(2x-2)xx(2)^(-(3-2x))=(2)(-3x)`
`rArr(2)^(2x-2-3+2x)=(2)^(-3x)`
⇒ 4x - 5 = -3x
⇒ 4x + 3x = 5
⇒ 7x = 5
⇒ x = 5/7
APPEARS IN
RELATED QUESTIONS
If a = 3 and b = -2, find the values of :
ab + ba
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
The seventh root of x divided by the eighth root of x is
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Simplify:
`7^(1/2) . 8^(1/2)`