Advertisements
Advertisements
Question
The value of \[\sqrt{5 + 2\sqrt{6}}\] is
Options
\[\sqrt{3} - \sqrt{2}\]
\[\sqrt{3} + \sqrt{2}\]
\[\sqrt{5} + \sqrt{6}\]
none of these
Solution
Given that:`sqrt(5+2sqrt6)`.It can be written in the form `(a-b )^2 = a^2 +b^2 - 2 ab` as
`sqrt(5+2sqrt6) = sqrt(3+2+2xxsqrt3 xxsqrt2)`
` =sqrt((sqrt3)^2 + (sqrt2)^2+ 2 xx sqrt3 xxsqrt2)`
`= sqrt((sqrt3+sqrt2)^2)`
` = sqrt3 +sqrt2.`
APPEARS IN
RELATED QUESTIONS
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If 102y = 25, then 10-y equals
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]