Advertisements
Advertisements
Question
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
Options
9
-9
\[\frac{1}{9}\]
\[- \frac{1}{9}\]
Solution
We have to find the value of `(-1/27)^((-2)/3)`
So,
`(-1/27)^((-2)/3)` = `(-1/27)^((-2)/3)`
`= (-1/3^3)^((-2)/3)`
` = -1/(3^(3x(-2)/3`
` = -1/(3^(3x(-2)/3`
`(-1/27)^((-2)/3) = -1/3^-2`
`-1/(1/(3^2))`
`-1/(1/9)`
= 9
APPEARS IN
RELATED QUESTIONS
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If (23)2 = 4x, then 3x =
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The simplest rationalising factor of \[\sqrt[3]{500}\] is
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.