Advertisements
Advertisements
Question
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
Solution
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] So,
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `{x^(ab)}^(1/(ab)) {x^(bc)}^(1/(bc)) {x^(ca)}^(1/(ca))`
=`x^(ab xx 1/(ab)) xx x^(bc xx 1/(bc) xx x^(ac xx 1/(ca)))`
= `x^(ab xx 1/(ab)) xx x^(bc xx 1/(bc) xx x^(ac xx 1/(ca)))`
`= x^1 xx x^1 xx x^1`
By using rational exponents `a^m xx a^n xx a^(m+n), ` we get
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `x^(1+1+1)`
`=x^3`
Hence the value of
\[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\] = `x^(1+1+1)` is `=x^3`
APPEARS IN
RELATED QUESTIONS
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
The seventh root of x divided by the eighth root of x is
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?