Advertisements
Advertisements
Question
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Solution
`(a+b)^-1(a^-1+b^-1)=a^xb^y`
`rArr1/(a+b)(1/a+1/b)=a^xb^y`
`rArr1/(a+b)((a+b)/(ab))=a^xb^y`
`rArr(1/(ab))=a^xb^y`
`rArr(ab)^-1=a^xb6y`
`rArra^-1b^-1=a^xb^y`
⇒ x = -1 and y = -1
Therefore, the value of x + y + 2 is -1 - 1 + 2 = 0.
APPEARS IN
RELATED QUESTIONS
Find:-
`9^(3/2)`
Simplify:-
`2^(2/3). 2^(1/5)`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =