Advertisements
Advertisements
Question
Find:-
`9^(3/2)`
Solution
We can write the given expression as follows
⇒ `9^(3/2) = (3^2)^(3/2)`
On simplifying
⇒ `9^(3/2) = 3^(2 xx 3/2) ...["using" (a^p)^q = a^(pq)]`
⇒ `9^(3/2) = 3^3`
∴ `9^(3/2) = 27`
APPEARS IN
RELATED QUESTIONS
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.